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Abstract

Spar's [II] vertically integrated, diabatic model is

modified so that it possesses an invariant mass integral of

the sum of enthalpy and the kinetic energy of the non-divergent

wind in the adiabatic case. The model's linear characteristics

are discussed, and a series of numerical experiments utilizing

idealized initial conditions is proposed.

4k



Introduction

The results [121 obtained with the diabatic model derived by

Spar [llJ indicated that diabatic processes were capable of influencing

the development of a cyclone. The predictions, however, were found

to be subject to a spurious anticyclogenesis. This effect was attributed

to an inconsistent treatment of the two components of the curl of the

vertical advection of the horizontal wind term in the vorticity equation.

Arnason and Carstensen [2] had previously discussed such an effect

but it was considered to be important only in hemispheric scale

predictions. As a result of the apparent significance of inconsistencies

of this type for even short-range predictions, we were led to consider

other possible inconsistencies in the formulation of the model. Three

types of inconsistency were found to exist. The first involves

assumptions regarding the modeling of the vertical distribution of

various model parameters. For example, the assumed vertical tem-

perature profile is taken as invariant. This assumption is in general

not consistent with the predictive equations of the model. It was con-

cluded, however, that this kind of inconsistency is inherent in all but

the simplest atmospheric models. Even a model with many infor-

mation levels requires the implicit assumption of a prescribed vertical

distribution within the layers separating the information levels, and

this distribution (e. g. linear variation) is generally incompatible

with the predictive equations. It was decided that no attempt would

be made at this time to eliminate the first type of inconsistency on

the assumption that it does not lead to serious errors.
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Secondly, following the ideas of Lorenz [9 1, we found that the

model equations possessed an inconsistent energy integral. (Spar [11]

had previously discussed the inconsistency in the circulation integral.)

It was concluded that, although such an inconsistent energy integral

might not be crucial-for an adiabatic model, it would deprive a diabatic

model of an important balance. If spurious energy sources are present

in an adiabatic version of a model, it is likely that the diabatic model

will also contain spurious sinks and sources, but their nature cannot

be anticipated. The major part of this paper is concerned with this

problem, and presents a simplified version of the diabatic model

proposed by Spar [11] -which has been modified to possess a consistent

energy integral. The model is derived and formulated as a set of

difference equations which are to be integrated numerically using a

series of idealized initial conditions. It is at this point that we come

to the third type of inconsistency.

Generally, the discussion of the merits of difference

schemes has been based on the order of magnitude of their truncation

errors. A different but related problem is connected with the

possibility that, although the differential equations of the model may

possess a consistent energy integral, the finite difference equations

may not preserve this property. Shuman [10] has devoted considerable

effort to the study of this problem utilizing the so-called primitive

equations. He found two schemes for approximating the non-linear

advection terms which preserved the energy integral of his fundamental

equations. However, no comparable work has been reported regarding

the proper choice of difference operators for terms appearing in the
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filtered equations. Gates [8] has recently reported a related difficulty

encountered in the hemispheric integration of an energetically consistent

two layer model with variable static stability. In an effort to minimize

this error, we have incorporated in the difference equations an approxi-

mation to the Jacobian operator suggested by A. Arakawa [1].

1. Some integral properties of the quasi-static equations

For an ideal, inviscid gas the hydrodynamic equations in the

p-coordinate system [5] may be written

+--7-+ .(7 Ikx \V)+ V., L-\ +.7.V(,+ K)=0 (0.2)

-V - \V• -6 (1. 3)

ap
2t RT (1.4)
8 p p

+ T+ -ý \V+ (T + ± c~7 .\V + H(1.5)
cF P cp P cp

Equations (1.. 1) and (1.2 govern the relative vorticity (•) and the

divergence (6) of the horizontal wind. The following notations are used:

-- + f , the absolute vorticity,

f , the Coriolis parameter,

d p LP the vertical p-velocity,
dt

17 , the horizontal gradient operator,

and Ik , a unit vector normal to the x-y plane directed

outward from the earth.
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0, p, T, R, cp, H, the geopotential pressure, temperature, gas

constant, specific heat at constant pressure, and

heat supplied, respectively,

and K, the kinetic energy per unit mass associated with \V.

Equation (1.3) is the equation of continuity, and equation (1.5) is the

first law of thermodynamics for an ideal gas.

We propose to examine two integral properties of the set (1.1)

through (1.5) for the purpose of establishing the consistency of simplify-

ing approximations which may be introduced. The paper by Lorenz [9]

serves as the guide for most of this analysis.

In what follows we shall have frequent recourse to the diverg-

ence theorem,

S -0ýda- di 8 (1.6)

A B

where do- is an element of surface area, B is the boundary curve of

the area A, and dl is line element of B. a08/8n is the derivative

of 4 in the direction of the outward normal to B, and LP and 0 are

arbitrary scalars.

The following symbols will be employed.

f( )do (1.7)
A

PO

j ) f( )dp (1.8)
Pt

In (1.8) p and Pt are fixed values of the pressure, p, representing

the upper and lower boundaries of the atmosphere.

If the operator, (), is applied to equation (1.1) we obtain,



it + n(Qk X V~di + 8Xdl

B B

+ (X dXi w-n 1k x V X)dX = 0 (1.9)

B B

The velocity \V has been represented above by the sum of. a solenoidal

and an irrotational vector. Thus

\V = !k x 74; + 7X , (1.10)

where '1 is a streamfunction and X is a velocity potential. If the hori-

zontal wind has no component normal to B, and if w vanishes on B, then

0Q• = (1.11)

Whenever the region A is such that the line integrals on B vanish, we

shall refer to A as a "closed" region. The result (1.11) is one of the

integral properties of the system of quasi-static equations.

For the formulation of the energy integral it is convenient to

partition the kinetic energy of the horizontal wind into components,

KK +K +K3 (1.13)

in which

Kl =7 41¢ •7 (1.13)

K a V • ... .(1.14)

and K3 = 7x"V4• (1.15)

Hence

+ 7 ; + VX.Ik X 7 ' (1.16)
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a I + x

The right hand side of (1.17) may be evaluated by using equations (1.1)

and (1.2). Under the assumption that the line integrals vanish,

From (1.2),

86 a IV

x "= Y1Ik X \V.-7x + 7X'VK + w Vx" -X'+Vx' 7V . (1.19)

From the continuity equation,

VX -7K K (1.20)ap

It follows that

8K [K aw +vAw8\+V( .17  (1.21)L- - --+lv

From the thermodynamic energy equation (1.5),

8c T ~
-- -- + . + - (cpT + )w. (1.22)

Addition of (1.22) to (1.21) leads to

(c = -K) (K+ cpT + 3)w + p (1.23)

Thus, in the adiabatic case the total energy of the system is con-

served if w vanishes on the upper and lower boundaries.

On the assumption that the vertical velocity, w, vanishes

at p0 and Pt, (1.21) and (1.22) yield
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"Vx. VO (1.24)

Oc T • •and + Vx.VT + (1.25)
C

7x. ý;a- (1.26)

In view of (1.24) and (1.25), (1.26) implies that a positive conversion

of potential energy into kinetic energy requires that a negative cor-

relation exist between w and the specific volume. Such a correlation

exists when warm air ascends and cold air sinks on the average.

The two integral theorems, derived above as equations (1.11)

and equations (1.24) and (1.25) are regarded as fundamental properties

of the quasi-static system. In what follows certain simplifying ap-

proximations will be introduced into the quasi-static system. We shall

judge the validity of these approximations by seeirxg how well they pre-

serve the integral theorems.

It is seen that if the kinetic energy of the irrotational part

of the wind is deleted from the total kinetic energy in eq. (1.24), the

integral theorems will hold for the general balanced quasi-static

system.

Thompson [14] demonstrated the necessity and sufficiency

of this approximation as a means of eliminating internal gravity

oscillations in the system. However, the general balanced, quasi-

static system is too complex to be attractive as a basis for an

atmospheric model. In order to discuss additional simplifications,

it is convenient to expand the modified version of (1.2),
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-' nV'P +7-V. - . VKI

?IlkX7+7. w a IkX7t+ V- K V. VK 3 }0 (1.27)

(1) (2) (3) (4) (5)

The bracketed terms above have usually been neglected, while the

remaining three terms are considered to comprise the balanced wind

equation.

We wish to determine how the neglect ot the bracketed terms

affects the integral theorems. For this purpose we have numbered the

various terms.

Consider first the energy integral. If we premultiply each of

the bracketed terms in (1.27) by the velocity potential and apply the

operator, (), we obtain,

F( a
0 - I -k X '7' - w--aK 2 -VX'7K 2 - K 3  (1.28)

() (2) (3) (4) (5)",

The terms numbered (3) and (4) in equation (1.28), may be combined

by use of the continuity equation. If. we apply the operator, (-), to the

result we find that this pair vanishes. Consequently the neglect of the

terms numbered (1), (3) and (4) in equation (1.27), does not require

any modification of the vorticity equation in order to maintain the

energy integral property of the general balanced, quasi-static system.

It can be shown that the neglect of the terms numbered (2) and (5) does

require that the vertical derivative appearing in the vorticity equation

be modified by deleting the irrotational wind component.

Thus, if we rewrite the vorticity equation in the form,
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-. + 7. 1,ik X VqJ + V.-,xVX + lk V X - k XV 0= (1.29)

the balanced wind equation in the form

'7-., + V.70 +V.VKI = 0 (1.30)

will be consistent with the energy integral

-Kl ='7x. V (1.31)

The modified vorticity equation (1.29), still possesses the integral

property, (1. 11).

A further simplification which has been widely used arises

from the desire to eliminate the complexities arising from the last

term in (1.29). Arnason and Carstensen [2] have shown that incon-

sistencies in the numerical approximation of this term can lead to

deleterious results in forecasting over a large area. It is readily

seen that if this term is neglected in (1.29) then for energetic con-

sistency the term, V7.VKl , should be eliminated in (1.30). It is

probably easier to justify this modification of the system by appealing

to the smallness of '7 2K in comparison with '72 within the context

of equation (1.30). Nonetheless, the system,

-+ '7 ('ilk x74') +V. ('t7 yx) = 0
at (1.32)

constitutes an energetically closed system with the same integral

properties as the general balanced, quasi-static system.

Because the balance equation of system (1.32) is non-linear

in ', and because the relative vorticity is frequently small compared
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with the absolute vorticity, many numerical prediction models have.

been based on the quasi-geostrophic, balance equation,

f£ 2 ý =720 (1.33)

in which fc is given a constant, mean value. The form of the vorticity

equation which is energetically consistent with (1.32) is,
S+ 

17.(iik x17 P) + f 7 c = 0

This set also preserves the areal mean value of the relative vorticity.

One further simplification is useful in this quasi -geostrophic

system. It is not necessary for consistency with the energy or vorti-

city integrals, but it is probably consistent with the tangent plane

approximation. This simplification involves writing the second term

in (1.34) as

V. (-n k x 17 j) r. J (P, 4)+ (1.35)

in which J(4, ý) is the Jacobian operator and Pc is a constant mean

value for the gradient of the Coriolis parameter.

In the preceding analyses we have not found it necessary to

introduce the first law of thermodynamics. We have implied, however,

that the horizontal wind appearing in the equation was modified as a

result of our modification of the divergence equation.

The set of equations that has been chosen as the basis for

the prediction model is the following:
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-+ J(' )+ • +f V 0 (1.36)
c X C

0 (t.37)

2- -- X (1.38)

80 RT (1.39)

ap p

and

-B + . + \V + + I ( +\V +C (1.40)
+t- ( ýV c p c

Although this set is considerably simpler than the general quasi-static

equations, the fact that it possesses the integral properties discussed

above recommends it as a useful system for studying certain simpler

aspects of the transformation of energy and growth of circulation

within the atmosphere.

2. Derivation of the integrated model

In the preceding section we considered several simplified

versions of the hydrodynamic equations. A simple system that

possesses an appropriate energy integral was adopted for use in this

study. We shall now discuss a model formulation of these equations

in which we follow in many essential respects the approach used by

Spar [11]. This is a particular type of the thermotropic -model de -

veioped by Thompson [13]. (Another such model, which is somewhat

more general than Spar's, was used by Berkofsky [4], but no numeri-

cal experiments with that model have been reported.)
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The thermotropic models are based on the assumption that the

isobaric temperature gradient does not change in direction but may vary

in magnitude as pressure changes. One may express this symbolically

as

VT(x,y,p,t) = A(p)7 T(x, y, t) (2.1)

in which we have used the "bar-operator", defined by

Pt

Po ( ) dp (2.2)P0o-Pt p 0

Since this operator will find frequent use later on, it is advantageous

to digress for a moment to discuss it. If we imagine the portion of the

atmosphere for which we wish to carry out our predictions to be con-

tained between two pressure surfaces p0 and Pt (P0 > Pt ), then the

mean value of any property of the model atmosphere may be defined by

(2.2). In this model we shall use po = 1000 mb and Pt = 200 mb, and

also assume that these pressure boundaries are rigid. The latter

assumption implies that w (- dp/dt) vanishes at p and Pt. The value

of any parameter at p = p will be designated by a subscript, o.

The difference between the mean value of a parameter and its value at

p = Po will be denoted by a subscript, T.

Returning to the thermotropic type model, we may observe that

the variation of temperature prescribed by (2.1) is sufficient to allow

a simple form of baroclinic development. By virtue of (2.1) we have

upon integration, the general temperature distribution,

T(x, y, p, t) = A(p) T(x, y, t) + F(x, y, t) . (2.3)

Following Spar we set F(x, y, t) E 0. The specification of A(p) may



be made in the form

A(p) = a(p/p 0 )b (2.4)

in which a and b are arbitrary, but not independent. Using the NACA

standard atmosphere as a guide, the parameter, b, was given the

value, 0.200. The requirement that the mean value of A(p) be unity

may then be used to specify a, which was found to be 1.123.

The vorticity equation is

__ - -oýc P (2.5)
at - ac a c

in which ; is the relative vorticity of the horizontal velocity, 4) is
S1-13 -1i -

the streamfunction of the horizontal velocity, Pc (1.45 x 10 cm sec-

is a constant value assigned to the variation of the Coriolis parameter,

fc (10-4 sec- ) is a constant value assigned to the Coriolis parameter,

and X is the velocity potential of the horizontal velocity.

The divergence equation is replaced by an equation of balance

which is

f C72 = 720 (2.6)

in which 0 (= g0z) is the geopotential. In what follows we will use

(2.6) in integrated form, viz. ,

f -- (2.7)

The hydrostatic equation for an ideal gas may be written as

80 RT (2.8)
ap P

in which T is the temperature, p the pressure, a the specific volume,

and R is the gas constant for dry air for which we will use. the value

6 -1 -i
2.87 X 10 ergs gmn deg



The continuity equatioa is

2 = ZX (2.9)
5dp

in which w is the vertical p-velocity (d p Eo)

The first law of thermodynamics is
"OT + H (2.10)

=-J(ý, T) -. +7 -X (+ ++ Vx7-

in which c is the specific heat at constant pressure (c* = 1.00x 107

-1p -Ip
-l1 -

ergs gm deg ), and H is the rate at which the enthalpy is being

changed by diabatic processes.

We shall also require equations to specify the value of H but

these are best postponed until after the integrated mode] equations

have been derived.

By using (2.4) and (2.3) in the hydrostatic equation, (Z.8), we

may arrive at the model representation of the geopotential, viz. ,

O(x,y,p,t) = 0(x,y,t) + E(P)wT(x'y t) , (2. 11)

in which
1 - A(p) 1

E(p) = a--[ - J (2.12)

From (2.7) and (2.12) , it follows that

C.

fc T OT' (2.14)

and

(x, yt, t) = P(x, y, t) + E(p) 4T(xl Y, t) . (2.15)

From (2.14), (2. 11), (2.12), and (2.8), we may derive the

relationship,
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T mT (2.16)

in which

m= ( )R = 1. 7 6 xI010 cm 2 sec-l deg"1 (2.17)

c

The results outlined above are as far as we can go in modeling

the parameters of the equations (2.5) through (2.10). We therefore

make an additional assumption which here proves to be convenient,

and in our analysis of the model's energetics proves to be quite

essential. It consists of the assumption that the velocity poterntia.l, X,

possesses a distribution analogous to that of the streamfun-tion, viz.

x(x y, t,t) = -(x, y,t) + E.(p)XT(X,y,t) . (2.18)

With (2.18), the continuity equation, (2.9), and the boundary conditions

we may derive the relations,

x= 0  
, (2.19)

S=F(p)cJ , (2.20)

2
Y XT. -yw , (2.21)

in which

p - (p) dp = 6.33 x l0"1 mb 1l, (2.22)

and
p

F(p) = y f E(p) dp (2.23)

Po

The mean vorticity equation is derived by applying the "bar

operator" to equation (2.5). The result is

. (2.24)



in which

E = 0.480 . (2.25)

It should be noted that this equation for the mean vorticity differs from

a barotropic vorticity equation only in the appearance of the term

involving the advection of shear vorticity by the shear wind. It is this

term alone that can lead to development of the mean circulation.

The next model equation may be derived by applying the vorticity

equation at p = po. expressing the value of the parameters at p0 in

terms of the mean and shear parameters and then subtracting the result

from the mean vorticity equation. One obtains in this manner the "shear"

vorticity equation,

atT G 4 T 2
(i- - J(T, -J(,CT)- ----P--- f c XT. (2.26)

By using equation (2.21), the model continuity equation, in (2.26)

we may replace it by

T T -
8

(T 28"•=(I - 1E--) J(T' •T) J(' •T) - J(ýPT' I- • + fc " Y227

We may now consider the first law of thermodynamics,

equation (2. 10). Upon application of the bar-operator to (2.10), the

equation reduces to the form,

B - J(P, T) - EA J(IT.T) "r(p) E(p) 7 2XT

+ EZVXf 17 T+ H!~ (2.28)

In (2.28) we have introduced an approximation, viz. , that

the term
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is a function of pressure alone. This assumption implies that the static

stability is a function of pressure alone. In view of (2.1b), the second

Jacobian in (2.28) vanishes. We may formally introduce (2.16), (2.14),

and (2.21) into (2.28) to write

8ý T Pf mn

- -JJ•,T) + Er -ymW+ cc ?'4r " XT+ --- H (2.29)
p p

in which the parameters have the following numerical values:

EF= 8.69 *K

-6.33 X 10-3 mb l

010 2 -1 -1
m -1.76 x 10 cm sec deg

f 10-4 -se
c

E-= 0.480

c= 1.00 x 10 7 2 -2 -Ic =.0010cm sec deg
p

We note that both equations (2.29) and (2.27) involve the tendency

of the shear streamfunction. By taking the Laplacian of (2.29) we may

combine the result with (2.27) to derive an alternative diagnostic

equation. We regard the resulting equation as governing the value of

w required to yield a flow which preserves both the balanced stream-

function and the diabatic temperature fields. The w equation may

be written after some rearrangement in the form,



18

cc "- J(

8 T' -fc..-,'(VCT.VxT) - _V H (2.30)
"Er -y cp E--r -y c

Equations (2.30), (2.26), (2.24), and (2.21) are the basic equations

of the integrated model. The dependent variables are 4', IPT' wo and XT.

It is necessary to close the system by giving auxiliary equations for the

specification of H in the w-equation. It should be noted that only two

of the four equations are prognostic; the other two equations are

diagnostic. Given the initial and boundary values for LP and T

w and XT may be computed from the diagnostic equations by simul -

taneous iteration, subject to prescribed boundary conditions. One may

then use the solutions for w and XT to extrapolate the streamfunctions

into the future by means of the prognostic equations. Before proceeding

to a discussion of the method employed for computing H, we shall

examine the integral properties of the equations derived above.

3. Integral properties of the model equations

It was shown in section 1 that the differential equations upon

which the integrated model is based possess an energy integral, com-

patible with that for the general quasi-static equations. We shall now

demonstrate that the integrated model equations also possess a suitable

energy invariant. Since the parameters in the equations of the integrated

model do not vary in the vertical we shall need only an integral operator,

), which we define as a surface integral in the x-y plane over a

"closedaf region.
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The kinetic energy of the non-divergent wind, K, may be

partitioned as follows

K =K M + E K + E(p)I , (3. ])

in which

K M - (3.-2)

T T 2T
KT- T (3.3)

and K74 = 7 . T (3. 4)

It follows from the nature of the modeling function, E(p), that the inte-

grated kinetic energy, K, is given by

- 2
K = KM + E K T (3.5)

Upon introducing (3.2) and (3.3) into (3.5), the local time derivative of

K may be expressed as

8 + ."T (3.6)
Yt 7t- ~ T at

When the areal average of (3.6) is taken and the divergence theorem

employed, we find that

+R E 2 T] (3.7)

The right hand side of (3. 7) may be evaluated by use of the vorticity

equations, (2.24) and (2.27). We obtain
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8-E--7T J(, T) (3. 8)

and

•T t T T ) + fc VLT '7XT (3.9)

Using (3. 8) and (3. 9) in (3. 7) we have the result,

f 7 41 *\7 X(.0
c T xT (3.10)

The preceding result demonstrates that the mean value of the

kinetic energy of the non-divergent wind is not conserved within the

model. Since the production term arises in the shear vorticity equation,

we may speculate that the increase in kinetic energy appears in the

shear wind first and is redistributed to the mean wind via the develop-

ment term in the mean vorticity equation.

We may now consider the first law of thermodynamics governing

the integrated value of the enthalpy, c T. From (2.16) we may writep

c
cpT = T E T (3.11)

p m T (.1

Thus,
c

-matq, (3. 12)

The right side of (3. 12) is readily derived from equation (2. 29). We

obtain the result,

atc T - E f CTT +T T (3.13)

It should be noted in passing that the appearance of the factor E

in the first term on the right of (3. 13) is dependent upon our having
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chosen the same modeling function, E(p), for both the non-divergent

and irrotational parts of the horizontal wind. Upon combining (3. 10)

and (3. 13), we find that

&(K + cp~
at ) (3.14)

which may be compared to eqs. (1.24) and (1.25).

The conservation of vorticity may also be shown to be a property

of the equations of the integrated model. The mean square value of the

vorticity,

~ i~~~ 2 -2 2S(-+ E ;T) = 2 + --E 4T , (3.15)

may be examined too. It follows from (3.15) and the vorticity equations

that

a~z 2• f •;T(3. 16)

Since it can be readily shown that

E-y= -FE' (3.17)

the result (3. 16) compares reasonably with that for the simple hydrostatic

vorticity equation (2. 5), viz.

F 2 f wj- (3.18)

within the framework of the integrated model. Since by (2. 16) we

may write

S- 2ýT-V2T (3. 19)
TT

Then (3. 16) may be interpreted as implying that the circulation is
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intensified when w is correlated with the mean temperature's field of

"lumpiness". For example, if cold pockets (V 2T > 0) were on the

average associated with ascending air (w < 0) or warm pockets with

descending air then the circulation would be weakened. Thus in some

sense we may regard the occlusion process to be contained within.the

model.

In connection with the approximation introduced in equation

(2. 28), the following analysis is offered as justification for the use of

this simplification. The first law of thermodynamics for an ideal gas

in quasi-static equilibrium may be written in the p-coordinate system,

as

OT - J(4, T) - VX17T + wS + H (3.20)

p
in which

p ( > 0 (3.21)

is related to the static-stability (80/8p). In most quasi-geostrophic

models, two approximations are made; viz. ,

Vx'VT = 0 , (3.22)

S = S(p) or constant. (3-.23)

When the equation incorporating (3. 22) and (3. 23) into (3. 20) is inte-

grated over a closed mass of the atmosphere one finds that there can

be no change in the average enthalpy for adiabatic flows.

From the general form of (3. 20) the proper change in

enthalpy for adiabatic flows is seen to be given by
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8cT '

P -7VX.VC T + wS c (3.24)
p p

Now one of the weaknesses of an integrated model, or other

models of limited vertical resolution, is an inability to specify the

term S with good accuracy. If we consider the consequences of making

assumption (3.23), but retaining the term VX T , we may derive

by use of the continuity equation, the result,

acT T

The result (3. 25) will reduce to

8c T

Sa(3.26)

which is the appropriate form [see (1.26) ] only if the stratification

is neutral. In particular for the model temperature profile used in

deriving the model parameters in section 2, (3.25) leads to

0.71 J-' (3.27)

which represents an underestimate of the conversion of enthalpy.

The simplification which we have used in the equation (4. 28),

while analogous to the procedure discussed above, leads to the proper

estimate of enthalpy conversion. To elaborate on the procedure, we

may first transform (3.20) into the equivalent form,

T _-J(ý,T)-X .-7T - + V7.( + L

aT ~VP (T+ cfvL P)7

+ VX.7T + Vc.V-L+ E (3.28)c c
p P
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We now define

r a +(3. 29)

and observe that

s - r 3.30)

Now for adiabatic flow we obtain from (3. 28) the result

ac T ----- -
P- Vx* X a- 7 (3.31)

The result (3. 31) makes it clear that the conversion of enthalpy within

a quasi-static atmosphere depends upon the work against the "pressure

gradient" done by the irrotational wind.

The form of (3. 28) suggests that this process may be evaluated

within the framework of a semi -geostrophic model with weak vertical

resolution by treating F as a function of pressure alone. It is this

procedure that we adopted by our assumption in (2. 28).

The choice for the numerical value of the parameter, T

which appears in (2. 28) was derived from the mean values of the

parameter S (- - 8F/ap) published by Gates [7] and from the model

function for the vertical velocity, F(p). To do this we made use of

the relations

vx ,- (3. 32)

FF' = (FF)' - F -FS (3.33

and the model continuity equation,

2-
- T= , (3. 34)



25

which led to

E- = + FS > 0 (3.35)

The average winter and summer values of FS were computed

to be

5.53 x 10"2 .K mb-1

and 4.45 x I0-2 K mb,

respectively. We chose to use a value biased toward winter values,

viz. , F'S = 5.50 x 10-2 K mb". Using this value in (3. 35) we obtained

the model value (y a 6.33 x 10-3 mb ,

rE = 8.69 K

4. The diabatic term

Since the differential equations governing the integrated model

possess an energy invariant of a general type, it is reasonable to em-

ploy the model in a study of the energy transformations associated

with diabatic processes. In particular, we have formulated approxi-

mations for the release of latent heat by condensation and the transfer

of sensible heat from the sea to the air. Because of the simple vertical

structure of the model, we will be forced to confine ourselves to the

influence of horizontal variation in heating upon the development of

circulation.

We have made use of the relationship given by Spar [1I1 for

the estimation of the magnitude of the sensible heat flux at the air-

sea interface. In modified units we may write Spar's formula an

Qs = 6.01 x 10-9 V0 (Ts - To) , (4. 1)
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in which Q is the rate of temperature change in degrees per second,

V is the surface wind speed in cm sec-, Ts is the sea surface

temperature, and T is the temperature of the surface air. To

account for the reduction in wind speed in passing from 1000 mb to the

surface we replace V in (4. 1) by 80% of the wind speed at 1000 mb,

0.8 1\VoI . The formula then becomes,

Qs = 4.81 x 10-9 \V0 1 (Ts - T ) • (4.2)

Since this formula was derived for cases in which the heat flux was

directed. from sea to air, we arbitrarily set Q = 0 when T < T

No heat flux is computed over the land.

In order to establish a formula for the rate of heating due to

condensation, we must consider an equation for the conveyance of

water vapor. The parameter used to represent the water vapor is the

specific humidity, q. A continuity equation for q may be written

neglecting evaporation as follows,

-q J((j, q) - 7. qV×X qw - ' (4.3)

in which (bq/8t) is the local rate of decrease in specific humidity

due to condensation. Application of the bar operator, () , to (4. 3)

yields,

=-J($, q) -•.qVX _ (8p)(44

Ra c

If we assume that the distribution of specific humidity may be written

as,

q(x,ty,t,t) L(p) (x,y,t) (4.5)

then the equation becomes,
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-S @ -q) LE J(T- LE. qT8-/c (4.6)

In qualitative agreement with the results of Benton and

Estoque [3], a reasonable average value for the parameter, LE

has been found to be -0.6. Because the integrated model is really

incapable of accurately describing the vertical distribution of specific

humidity, it was decided to simplify the term, V7. q7x , by replacing

q with an average value, qc . By introducing the model continuity
c

equation (Z. 21), and the approximation just discussed, we may re-

write (4. 6) as,

8 q J(ý-, q!-) -• T (f m ) ÷ 'c Y ( f--t~c -(4.7)

Recalling that LE = -0.6 , we may note that the term involving W

will act as a source of q when W < 0 (ascending air) and as a sink

of q when w > 0 (descending air). Now if the air column is locally

saturated, one may expect that the Jacobian terms will rarely tend

to increase q above its local saturation value. However, if • is

negative, the term involving w'will act to increase q above its

saturation value. We are therefore led to assume that,

7-a7•-tc LEqc-Y W• (4.8)

if E5 < 0 and the air is saturated.

To formulate this hypothesis quasi-analytically we introduce

the parameter, 6, defined as
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6 = 0O if W> 0 or q<qs

6= I if w< 0 and q >jqs

Using (4. 8) and (4. 9) in (4. 7), we may write

aq (4.10) SJ(4, q) - LIE J(T Vq-+( - 6) E-E-;Tc -Y(. 0

Now if 6 1, the rate of change in mean temperature in the

column may be obtained by multiplying (4. 8) by the ratio of the latent

heat of vaporization, Lv, to the specific heat at constant pressure,

c . We obtain
p

LvLE q Y
Qc c w (4.11)

P

Using the values,

Lv = 600 cal gm-I

c = 0.239 cal gm-I deg-I
p

LE = - 0.6

qo = 2.5 x 10-

= 6.33 x 10-3 mb-I

we may write

Qc = Tr IW-1 (4.12)

in which T 23.83 x 10- deg mb-

The precipitation rate, P, may also be computed from (4. 8)

through the relation

( - (4.13)

in which g is the acceleration of gravity, and p, is the density of

liquid water. Using (4. 8) we obtain
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P = r IJI (4.14)

-3 -1in which r = 7.60 x 10- cm mb1

In order to compute the saturation specific humidity from the

model parameters, we adopt the approximation by Spar,

-4 2 3
qs = 7.0 x 10 [0.07016 + 0.07899X - 0.01358X + 0.01757X

- 0.00204X 4+ 0.00025 X J , (4. 15)

in which

X [3.35 x 1 07%.T - 1.26 x 10 4 400 . (4. 16)

The expressions for s and Qc derived above are incorporated into

the w-equation (2. 30) in place of the ratio, H/cp

5. Method of numerical integration

It has been a general practice to test weather prediction models

by performing numerical integrations with observed initial data and

comparing the predictions with the observed fields. Although this pro-

cedure is essential when it is proposed to employ the model in routine

forecasting, it has several disadvantages, one of them being the

necessity for a major data collection and analysis program. Additionally,

one cannot control the elements entering into the. initial data, and con-

sequently pertinent factors relating to model behavior cannot be simply

isolated.

For these reasons, the model derived above is to be applied to

a hypothetical atmosphere contained between fixed vertical walls

parallel to the zonal direction and extending to infinity. The inte -

gration region was truncated in the zonal directions by assuming that
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zonal periodicity could be employed as a boundary condition across

imaginary meridionally oriented walls. Based on the limitations of

computer core storage and the linearized behavior of the planetary

scale waves (see section on linear analysis), the zonal dimension

of the integration region was fixed at 10,000 km. The zonal walls

were separated by 4500 kin, which is approximately 40 degrees of

latitude.

Within this channel the initial field of streamfunction is

specified analytically. From the analytic functions the values of

streamfunction were computed at the grid points formed by two sets

of lines, parallel and orthogonal to the zonal walls respectively.

The lines were spaced 250 km apart and yielded an array of 19 x 40

grid points. To this array we added two columns and two rows en-

closing the integration region for use in specifying the boundary con-

ditions.

The differential equations of the model fall into two categories,

two dimensional boundary value equations and tendency equations.

The most difficult problem encountered is the simultaneous solution of

the omega and continuity equations. Individually these equations are

the familiar Helmholtz and Poisson equations respectively. For the

omega equation we used Dirichlet conditions (w = 0) on the zonal

boundaries and periodicity on the meridional boundaries. The

periodicity condition was duplicated for the continuity equation, but

the zonal boundary condition was of the Neuman type (8x/8y = 0)

expressing the vanishing of the normal component of the velocity

potential there.
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The vorticity equations are of the Poisson type in the stream-

function tendency and are solved for boundary conditions identical with

those for omega.

The tendency equations were of two types. The streamfunction

tendency was computed at each grid point by the solution of the vorticity

equation. The temporal extrapolation is accomplished by first forward

and then centered time steps over an interval At = 1 hour. The water

vapor conveyance equation required the computation of the Jacobians

by means of upwind difference schemes to reduce the truncation error.

The tendencies were extrapolated by forward differences only.

The finite difference equations used in the numerical solution

are listed below. The notations are used relative to this stencil of

grid points.

+7 + +6

+3 +0. +I

+8 +4 +5

172P M PI + P2 + P3 + P4 -4P (5.1)

AxP- P1 P 3  
(5. 2)

11(PIQ) a (P1 I - P 3 )(Q 2 - Q 4 ) - (Pz - P 4 )(Ql - Q3) (5.3)

J 2 (P = Q) (P 8 - P 7 )Q3 + (P 6 - PY)Q 2 - (P 5 " P 8 )Q 4  (5.4)

J3 (P. Q) = (PI - P 2 )Q 6 - (P 4 - P 3 )Q 8 + (P2 - P 3 )Q 7 - (P 1 - P 4 )Q 5  (5.5)

J(P, Q) (P, Q) + jz(p' Q) + J 3 (P, Q)] (5. 6)

A yxQ = Q ["Q Q4 (5.7)

Tp. - Q = [A x1 '. x Q] + [A y P.- ZyQ) (5. 8)



In these equations, an unsubscripted variable is to be understood

to apply at the point 0 in the stencil. The grid spacing will be denoted

by the letter h (= 250 kin).

The mean vorticity equation:

2 xIFP (5. 9)97F T J(" - •W)

The shear vorticity equation:

2 ~ -aq TT ( T~ E '%+) w (5.10

The continuity equation:

2 X 2 (5.11)

The omega equation:

2 -

2 - (f C [T 4m-2 ( 1 J(C ) E " p

I ~ 1c E7 f1 21T1 (5.12)

In the water vapor conveyance equation, we make use of upwind

approximations for the Jacobian operator [6]. This will be denoted by

the symbol, J(4, P)

Since 2± +v, the northward component of the wind is +v,

ax

and -u, the eastward component of the wind is +u, we first

determine the sign of u and v by using a centered difference approxi-

mation for 8W/8x and 84'/8y . We evaluate Bp/8x and ap/ay by

one-sided differences in the direction from which the wind is blowing.
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The water vapor conveyance equation is

.1 E- E
--- ( (), LE q-- (5. 13)

The auxiliary equations are

-" .(5. 14)

h-
1 •2,

hT :7 (5. 15)

h

-=Q +Q (5.16)

P

Q =4.81 x 10-9 P(4-..T)" V, ).J (Ts 1.123 T' (5.17)

Qc =6 ir IlI (5.18)

The program is written to produce maps of the predicted fields

at 6 hour increments, as'well as a record of the energy transformations

which are printed out at hourly time steps.

Because of the inherent truncation error in numerical com-

putation, we cannot assure preservation of the integral properties of

the model differential equations by their numerical analogues. We

have introduced the approximation to the Jacobian operator defined in

(5. 6) in an attempt to preserve the integral property of the Jacobian

operator.

6. Linear analysis of the model equations

The basic model equations, (2.21, 2.24, 2.27, and 2.29), may

be subjected to a linear analysis by means of the superposition of a

perturbation,
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'T = I' eik(x-ct)

W i C

XT =ix 
(6.1)

H iH'

upon the basic state,

'= - Uy

L•T ="UT y

• = o (6.2z)
WT=0

XT 0

H=0

The differential equations reduce, upon substitution of (6. 1) and (6.2),

to this set of algebraic equations in the amplitudes,

(c-+)ou ''o 63
- U+ P -E-UT - 0 (6.3)C Kc T

C U + (1 - U -T + E- m T -X , = 0 ,(6.4)

(C - U) P' + UT 4 + 1 + + -m H (6.5)

p

X K , = 0 (6.6)

It is to be noted that the term, ?74 T V*TXT , in equation (2. 29) is

of higher order in the perturbation quantities and, consequently, does

not appear in (6. 5).

For the present we will examine the adiabatic equations, taking
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H' to be zero. In order to simplify the computation of the stability

characteristics of this system we may first use equations (6. 5) and

(6. 6) to eliminate a and X' from equations (6. 3) and (6. 4). From

(6. 5) and (6. 6), we may write,
f cf C( 

. 7CX' =E-c[(C U)Y'+UT] (6. 7)

If we set the parameter, which multiplies the bracketed terms in (6.7),

equal to the dummy variable, p,

f -

P1 - =C~2 (6. 8)
K [ErmK

the equations (6. 3) and (6. 4) may be rewiritten as

(C C)E U 0 (6.9)

and

(- )UT• + + ')(C - U) + (1 - E-- )UT + P]4) 0 (6. 10)

The determinant of the coeficients of - and ý' is

(+ - X + (p' 1) E , (6.11)

in which
XPC - 2 + ) . (6.12)

Since the system, (6.9) and (6. 10), is homogeneous, a non-

trivial solution exists only if A vanishes identically. Letting (6. 11)

equal zero and solving the resulting quadratic for the parameter, C,

we obtain,
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C = + ±nl/[ -D (61
K7 L 4T 1 K" .

in which the discriminant, D, is given by

T -4 4 (6.14)

If D < 0, the "phase velocity", C, will be complex and the

perturbations will be composed of two linearly superimposed parts: one

growing exponentially, the other decaying exponentially. The rate uf

growth of the amplifying part of the perturbations may be computed for

various values ci the model parameters, as a function of UT and the

wave length, 27r/K

Before discussing the graph showing the growth rate for the

adiabatic case, we may briefly consider the diabatic term, H'. In the

formulation of the diabatic terms given in section 4, we arrived at the

relation

H = 7I WI +s (6.15)C5
p

in which the first term is the measure of the release of latent heat

and the second term the rate of addition of sensible heat. The sensible

heat term is not susceptible to linear analysis since it is a time

dependent non-linear function of the dependent variables. However,

the potential influence of the latent heat release may be estimated,

since it is linearly related to w when condensation is occurring. The

principal influence which we can examine involves the effective increase

in the stability parameter, p. Thus p varies from
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p = 0. 6 4 x 10'15 cm"2

for the no-heating case to,

p= 1.11 X 10-15 cm-2

when condensation is occurring. By examination of equation (6.14), we

may determine the short-wave cut-off to the unstable waves as a function

of p. It is clear that D will be positive for any value of UT provided that

2
a < (6.16)K 4

Using the values of p given above we find that for the no-heating case all

waves with wave length less than 2.49 x 103 km are stable. With heating,

the reduction in the value of p carries the potentially unstable region down

3
to waves with wave length greater than 1.85 x 10. km.

If we assume that D is negative then we may write,

C = C.R iCC (6,17)

Using (6.13), it follows that

Cc -K UT) (6.18)R U+- (E- -1I)U

and

S K U2 P c+ 1)U 2(K 2 + T)(6.19)2(Kz + p)L4 T 2\T J

If we set KCC equal to a constant, say N, then we may solve

(6.19) for UT as a function of K. The parameter N is the time required

for wave number, K, to grow to I -times its initial amplitude for the

value of UT as a function of K by,
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T (6.20)

in which

A K2.25] (6.21)

PK

B = C (6.22)
2K

4

2Pc2 4N 2 (+P2

and C + K2 (6.23)
KK

1

Equation (6.20) was solved for UT, with N = •- day, I day,

2 days, and 10 days, and for the two values of p given above. Pc was
-13 -1 -1

assigned the value, 1.45 x 10 cm sec . The results are given in

figure 1.

In addition to these computations we also varied the value of

the parameter, E. We made computations for E = 0.333, 0.50, 0.65, 1.00,

1.25. As E increased the wave length of maximum instability shifted

to larger values and the longer waves in general became more unstable

for definite values of UT.

The stability characteristics of the linearized model are used

as a guide in specifying the initial distribution of I and 4JT in the

non-linear numerical integrations.

Two results obtained by following the analysis procedure em-

ployed by Wiin-Nielsen [15] may be noted. By solving the initial value

problem posed by the linear equations for a simple initial distribution

of the perturbations, we find that the unstable waves possess a limiting

phase relationship between the mean and shear streamfunctions. If
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0 represents the phase lag (positive when 4 T lags P), the limiting

value is given by

--2 2 1/2

0 = arc tan 2 (6.24)

[' +(E:- 1) U T

By evaluating (6.24) before performing the numerical integrations,

we are able to set the phase lag between t and ýT appropriately.

This permits us to avoid computing changes which merely reflect a

readjustment between the two fields.

Finally, use was made of the frequency equation (6. 13) to

compute the propagation velocity for the long, stable waves. It

was desired to avoid unrealistic retrogression of the long waves in

the computational scheme without introducing a mean divergence field.

To achieve this the zonal dimension of the integration region was set

at 10,000 km. This value was chosen on the basis of the phase speeds

for the mean and shear streamfunctions computed from (6.13) for
-1 -1

U = 25 m sec and UT = 20 m sec (see Table 1).

TABLE 1. The phase velocities of the mean streamfuaction, C,
and the shear streamfunction, CT, as a funrtion of wave
length, L. Negative values indicate motion to the west.

3 -11 -.
L [103 kin] C [m sec I CT [m sec

10 - 1.66 + 5.30

11 - 9.36 + 4.47

12 -17.79 + 4.28

13 -26.96 + 4.09

14 -36.86 + 3.99

15 -47.49 + 3.90
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7. Proposed numerical experiments

Since the energetic consistency of the model may be tested

without the inclusion of the diabatic heat terms, it is proposed to carry

out comparative predictions with and without the energy conversion

term (V xT VT) in the omega equation. For these tests, we will

vary the initial stream function using wave numbers two and three,

separately and in combination.

Following these adiabatic computations, we will run

cases with diabatic heating, using both the energetically consistent

and inconsistent versions of the base model.

Finally, we will perform a set of experiments using the

energetically consistent version of the model with varying fields of

diabatic heating. These last experiments are designed to investigate

the possibility that a coupling of the diabatic heating to the adiabatic

process of baroclinic development can augment the latter in a sig-

nificant manner.
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Fig. 1. Stability characteristics of the model showing the wind shear
required for a perturbation of any wave length to grow to
e (2.718...) times its initial value in 1/2, 1, 2, and 10 days.
Figure A is computed for the parameter, p, equal to its value
in the "dry model", while figure B is for the p equal to its
value in the "wet model" when condensation is occurring.
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